Accuracy evaluation of two precipitation datasets over upper reach of Heihe River Basin, northwestern China

نویسندگان

  • SiWei He
  • ZhuoTong Nan
  • YuTing Hou
چکیده

As an important forcing data for hydrologic models, precipitation has significant effects on model simulation. The China Meteorological Forcing Dataset (ITP) and Global Land Data Assimilation System (GLDAS) precipitation data are the two commonly used data sources in the Heihe River Basin (HRB). This paper focused on evaluating the accuracy of these two precipitation datasets. A set of metrics were developed to characterize the trend, magnitude, annual allocation, event matching, frequency, and spatial distribution of the two datasets. Meanwhile, such accuracy evaluation was performed at various scales, i.e., daily, monthly, and yearly. By comparing with observations, this study concluded that: first, both ITP and GLDAS precipitation data well represented the trends at corresponding sites, and GLDAS underestimated precipitation in most regions except the east tributary headwater region; second, unusual annual precipitation distribution was observed in both datasets with overestimation of precipitation in May through September and GLDAS appeared to be much severe; third, the ITP data seriously over-predicted the precipitation events; fourth, the ITP data have better spatial distribution than GLDAS in the upper reach area of HRB. Overall, we recommended ITP precipitation data for the land surface study in the upper reach of HRB.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C3 Vegetation Mapping and CO2 Fertilization Effect in the Arid Lower Heihe River Basin, Northwestern China

In arid regions, C3 vegetation is assumed to be more sensitive to precipitation and CO2 fertilization than C4 vegetation. In this study, normalized difference vegetation index (NDVI) is used to examine vegetation growth in the arid Lower Heihe River Basin, northwestern China, for the past three decades. The results indicate that maximum NDVI (MNDVI) of the area increases over the years and is s...

متن کامل

Phenological response of vegetation to upstream river flow in the Heihe Rive basin by time series analysis of MODIS data

Liquid and solid precipitation is abundant in the high elevation, upper reach of the Heihe River basin in northwestern China. The development of modern irrigation schemes in the middle reach of the basin is taking up an increasing share of fresh water resources, endangering the oasis and traditional irrigation systems in the lower reach. In this study, the response of vegetation in the Ejina Oa...

متن کامل

Mapping and assessment of degraded land in the Heihe River Basin, arid northwestern China

Land degradation is a great threat in the Heihe River Basin, located in the aridinland of northwestern China and land desertification is one of the main aspects ofenvironmental changes in this basin. Previous studies have focused on water resourceutilization and soil erosion, but the status of degraded land in the Heihe River Basin, suchas its distribution, extent and precise characteristics is...

متن کامل

Modeling Ecohydrological Processes and Spatial Patterns in the Upper Heihe Basin in China

The Heihe River is the second largest inland basin in China; runoff in the upper reach greatly affects the socio-economic development in the downstream area. The relationship between spatial vegetation patterns and catchment hydrological processes in the upper Heihe basin has remained unclear to date. In this study, a distributed ecohydrological model is developed to simulate the hydrological p...

متن کامل

Distributed modeling of landsurface water and energy budgets in the inland Heihe river basin of China

A distributed model for simulating the land surface hydrological processes in the Heihe river basin was developed and validated on the basis of considering the physical mechanism of hydrological cycle and the artificial system of water utilization in the basin. Modeling approach of every component process was introduced from 2 aspects, i.e., water cycle and energy cycle. The hydrological proces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015